A pneumatic tool, air tool, air-powered tool or pneumatic-powered tool is a type of power tool, driven by compressed air supplied by an air compressor. Pneumatic tools can also be driven by compressed carbon dioxide () stored in small cylinders allowing for portability.
Most pneumatic tools convert the compressed air to work using a pneumatic motor. Compared to electric power tool equivalents, pneumatic tools are safer to run and maintain, without risk of sparks, short-circuiting or electrocution, and have a higher power to weight ratio, allowing a smaller, lighter tool to accomplish the same task. Furthermore, they are less likely to self-destruct in case the tool is jammed or overloaded.S. R. Majumdar (1996). Pneumatic Systems: Principles and Maintenance. Tata McGraw-Hill Education. pp. 107–. .
General grade pneumatic tools with a short life span are commonly less expensive and considered “disposable tools” in tooling industries, while industrial grade pneumatic tools with long life span are more expensive. In general, pneumatic tools are cheaper than the equivalent electric-powered tools. Regular lubrication of the tools is still needed however.
Most pneumatic tools are to be supplied with compressed air at 4 to 6 bar.
The primary disadvantage of pneumatic tools is the need for an air compressor, which can be expensive. Pneumatic tools also need to be properly maintained and oiled regularly. Failing to maintain tools can lead to deterioration, due to a build up residual oil and water.
Flow or airflow, related to air consumption in pneumatic tools, represents the quantity of compressed air that passes through a section over a unit of time. It is represented in l/min, m3, at the equivalent value in free air in conditions of standard reference atmosphere (SRA). For example: +20 c, 65% of relative humidity, 1013 mbar, in accordance with norms NFE.
The most common types of pneumatic tools include:
|
|